

# Review Issues & Discussions from First Workshop

James D. Gilsinn
National Institute of Standards & Technology
Intelligent Systems Division
james.gilsinn@nist.gov

#### **Overview**



- The first Wireless Sensing Workshop was held on June 4, 2001, at the Sensors Expo/Conference at the Rosemont Convention Center in Chicago, IL
- The workshop was organized in order to explore industry's interest in wireless sensing.
- 90 people attended the workshop representing:
  - Manufacturing, Process Control, Aerospace, Home
     Automation, Automotive, and Government

# Overview (cont'd)



- Overview of IEEE 1451
- Application of IEEE 1451.1
- Review of Current Technologies
  - Wireless Ethernet (IEEE 802.11x)
  - Bluetooth
  - Hardware & Software tools
- Proposed P1451.5 wireless standard
- Open forum & discussion

### **Proceedings**



- Paper Copy of Proceedings
  - Contact Kang Lee, kang.lee@nist.gov
- CD Copy of Proceedings
  - Available here, or
  - Contact James Gilsinn, james.gilsinn@nist.gov
- Web Accessible Copy of Proceedings
  - Available online at http://ieee1451.nist.gov

# Why Use Wireless?



- Some attendees questioned whether wireless communications should be used for sensors
- Wireless may not be the best solution for all cases
- Many cases may allow for less deterministic communications. These may present possibilities where wireless is a best-fit solution
  - Large facilities
  - Low-speed, long-range communications
  - Hazardous environments

### **Data Reliability**



- Data reliability was the largest issue raised
- Data reliability depends on:
  - Availability of the wireless signal (hardware)
  - Integrity of the data message (software)
  - Confidentiality of the data message (software)
- Availability
  - Many sensors use ISM band
  - ISM band is free, but full of other users
  - Some standards allow for signal degradation

# Data Reliability (cont'd)



- Data Integrity and Confidentiality
  - Error checking of data to prevent bad data packets
  - Algorithms available to correct errors in the data
  - IEEE 1451.2 specification for Transducer Electronic
     Data Sheet (TEDS) has simple error checking
  - Wireless communication lends itself to confidentiality problems
  - Vendors should incorporate additional security features to prevent industrial espionage



### **Bandwidth Requirements**

 An informal survey of the bandwidth requirements for workshop attendees was conducted

| - <u>Bandwidth</u>    | <u>Interested Parties</u> |
|-----------------------|---------------------------|
| - <= 300 bps          | 63%                       |
| - 300 bps - 50 kbps   | 25%                       |
| – 50 kbps - 250 kbps  | 3%                        |
| - 250 kbps - 1.5 Mbps | 6%                        |
| - > 1.5 Mbps          | 3%                        |

# Where Should Wireless Be Located?



 The workshop attendees had varying opinions on where wireless communications should be incorporated into a wireless sensor system



Wireless STIMs



Wireless NCAP Node

#### **Devices Per Node**



- NCAP nodes allow multiple sensors to be attached to the network using a common point of access
- An informal survey was taken to determine how many sensors per NCAP node users wanted

| <ul><li>Sensors/Node</li></ul> | <b>Interested Parties</b> |
|--------------------------------|---------------------------|
| <b>- 8</b>                     | 26%                       |
| - 32                           | 53%                       |
| - 256                          | 21%                       |

# Transmission Power vs. Battery Lifetime & Safety



- Some wireless communication standards use 100mW of transmission power
- Some sensors expected to run years before replacing batteries
- Batteries lifetime may be reduced because of transmission power
- 100mW transmission power may be too high in hazardous environments

# 9012

## "Hot" Wireless Technology

- Although Bluetooth and 802.11 may not be exactly what sensor vendors want, they may help bring wireless communications to sensors
- Sensor manufacturers and vendors need to consider development cost vs. performance benefits of using standardized technology vs. ASIC chips
- Development systems for some standardized technology may be prohibitively expensive

#### **ISM Band Users**



- The Industrial, Scientific, and Medical (ISM) bands setup by the FCC are unlicensed
- Many consumer & commercial devices are designed to use these frequencies

900 MHz
 Cell phones, portable phones, home

electronics, spread spectrum

2.4 GHz Portable phones, spread spectrum

5 GHz
 Satellite communications

# Are Multiple IEEE 1451 Wireless Standards Needed?



- With the seemingly disjoint worlds of low-speed and high-speed wireless communications, is it possible to create one standard that fits the needs of everyone?
- Will multiple versions of an IEEE 1451 wireless standard be needed to account for the varying needs of its users?

#### Other Issues



- Sensor reconfiguring & reprogramming
  - 2-way links necessary
  - Uplink and downlink can run at different speeds
- Broadcast vs. targeted communications
- High-speed data synchronization by multiple sensors
- Can the NCAP and STIM be combined?

### **Proceedings**



- Paper Copy of Proceedings
  - Contact Kang Lee, kang.lee@nist.gov
- CD Copy of Proceedings
  - Available here, or
  - Contact James Gilsinn, james.gilsinn@nist.gov
- Web Accessible Copy of Proceedings
  - Available online at http://ieee1451.nist.gov